

What you're supposed to do when you don't like a thing is change it. If you can't change it, change the way you think about it. Don't complain."

— Maya Angelou Wouldn't Take Nothing for My Journey Now

A Path to a Secure Future

The Way Forward: We must embrace new technologies to build a robust security playbook

PKI Certificate Turmoil

A closer look by DigiCert 2021

50,000	Certs being managed, some 100,000+				
1,200	Unmanaged certs				
43%	Annual growth in 2021				
61%	Concerning amount of time managing certs				
37%	3+ departments managing certs				
66%	Outages from unexpected expiring cert				
47%	Discover 'rogue' certs frequently				

DigiCert
Global leader of
TLS, SSL, IoT and
PKI solutions
Used by nearly
90% of the Fortune
500 and 98 of the
100 largest global
banks choose

DigiCert

https://www.digicert.com/c ontent/dam/digicert/pdfs/r eport/pki-automationreport-en.pdf

The Vast World of Public Certificates

Website/server identity	USG	National eID	Blockchain	OT/SCADA (utilities)
~300M domains	PIV + CAC = 8M Devices = 9M	200M-400M	~600M	~1 Billion
ePassports	FIDO Passkey	Automotive	Financial	IOT
~1.1 Billion	1 Billion	Billions	15+ Billions	Tens of Billions

Challenges of Traditional Public Key Lifecycles

Inherent complexities / lack of flexibilities

Improper implementation, i.e., CurveBall, ROCA, etc.

Human error: forgotten certificates, incorrect installation

Single Point of Failure: central authority

Performance bottlenecks in high volume environments

Scalability: volume, cost, infrastructure, labor, licensing

Difficulty in ongoing security management and policy

Key rotation / updates

Revocation Lists: often slow, expensive to distribute, and nearly broken

Long chains and rogue certs

Challenges of PQ Public Key

Performance Hits: Latency/power drain. May be untenable in tactical edge

Logistical Nightmares: Revocation complexity + interoperability + backwards compatibility

Legacy Burden that will resist full migration

Down time for "live systems"

Lack of flexibility

Cost

Massive Scale: many billions

PKI is not a silver bullet.

Trust is Expensive

Unraveling the Financial Puzzle of PKI Upgrades

PQC Migration

- Re-issuance of all certificates
- Cost: ~\$100-\$200 billion globally by 2035
 - Breakdown: \$50/certificate × 3 billion
- Infrastructure upgrades: \$20–\$50 billion for CA systems, HSMs, and automation
- Labor: \$10-\$20 billion for manual processes (60% lack automation)

PQC OPEX

- 10-15% increase due to complexity and volume
- 2–3x more computationally intensive

The Colossal Certificate Ecosystem

Billions of Active Certificates

Secure connections for websites, apps, IoT, etc.

Rapid Annual Growth

300M+ per year
Projections of **trillions** by 2030 if
unchecked

Diverse **Ecosystem**

Millions of domains Gov's, enterprise networks, 5G, EVs 200+ CA makes fragmented

dependencies

Upgrade Challenge

Concurrent global upgrade is logistically impossible

Downtime risk

1% failure == 15M sites offline or loss \$100B+/year

Future Maintenance

Growth of Al automation

Risk of downtime, breaches, compliance failures, or even collapse in infrastructure "71% of leaders fear their certificate authority could become untrusted."

~CyberArk

March2025

The Doudlass Slop

Mapping Quantum Threats: An Engineering Inventory of Cryptographic Dependencies

Carlos Benitez*

(Submitted on 2 Jul 2025 (v1), last revised 14 Jul 2025 (this version, v2))

Pruning the Tree: Rethinking RPKI Architecture From The Ground Up

Why Public Key Infrastructure Isn't the Silver Bullet for Digital

Security

CLOUDFLARE

by KSchelar: Clectronic Academic Papers for Scholars - women't vo. 2000.

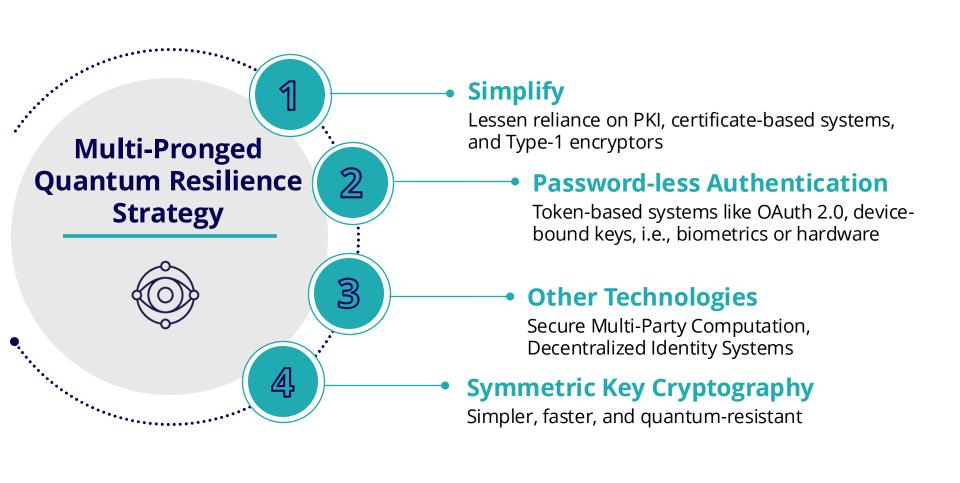
Decentralized Credential Status Management: A Paradigm Shift in Digital Trust

Partics Hertil

Senore covery Newsold

Submitted on 10 tan 2024 (v1), last newsed 12 tan 2024 Ohis version, v21

Avoiding downtime: modern alternatives to outdated certificate pinning practices


Failures of public key infrastructure: 53 year survey

Adrian-Tudor Dumitrescu, Johan Pouwelse

How do we move forward?

Can we do the unthinkable and ditch certs?

Symmetric Keys as Quantum-Resistant Backbone

- AES-256: Faster, smaller keys, low overhead
- Larger Quantum Delta
 - Grover's algorithm needs 2¹²⁸ ops—safer margin than Shor's
- Established resistant to side-channels

Symmetric isn't new—it's battletested, quantum-safe, robust, and ready to scale.

ARQIT

Foundational Standards for Symmetric Cryptography

NSA CSfC RFC 9206

Symmetric Key Management Annex 3.0: Symmetric PSKs may be used instead of X.509 authentication

Standard for CNSA

RFC 8784

RFC 9370

Mixing Preshared Keys in the IKEv2 for Post-Quantum Security

Multiple Key Exchanges **RFC 9257**

RFC 9258

Guidance for External Pre-Shared Key (PSK) Usage in TLS

Importing External Pre-Shared Keys (PSKs) for TLS ISO/IEC 11770-2

Part 2: Mechanisms using symmetric techniques **RFC 8696**

IETF draft SKIP

Using PSK in the Cryptographic Message Syntax

Secure Key Integration Protocol **IEEE 802.1AE**

PPK based MACsec encryption keys

Best of Both Worlds: Strategy of KEM + Symmetric

PQ KEM as initial authentication or "bootstrap"

Strong auth + efficient ongoing protection

Defense in Depth

Symmetric agreement and rotation for data flows between endpoints

Benefits of a Symmetric-Centric Approach

ACCELERATE QS TRANSITION

REDUCES PKI DEPENDENCY

ENABLES AGILITY

SCALABLE

CONSTRAINED ENVIRONMENTS

COST-EFFECTIVE

Call for New Conversations and Reflections on Rethinking PKI

In the quantum era, efficiency and simplicity is security.

ARQIT

Let's collaborate!

<Roberta.Faux@ArqitInc.US>